Evolution of virtualization technology for the future optical internetworking

Michiaki Hayashi
mc-hayashi@kddilabs.jp
KDDI R&D Laboratories Inc.,
2-1-15 Ohara, Fujimino-shi, Saitama 356-8502, Japan
+81 492 78 7547, +81 492 78 7821
Agenda

- Networking evolutions
- Network resource virtualization for telecom operator
 - High-level architecture
 - Design of prototypes
- Demonstration
 - Policy-based E2E quality control
 - Resource scheduling
 - Distributed messaging flow
- Virtualization of functional modules
 - High-level architecture
 - Cache function control
- Conclusion
Networking evolutions
-From consolidation to customization-

~Today
- IP/Ethernet
- ADM
- TDM
- ATM

“NGN”
- IP/Ethernet

Beyond NGN
- Virtual network
- Storage (e.g. cache)
- Data processing (e.g. compression)

Transport architecture

Networking technologies
- Control plane (MPLS, GMPLS)
- Session/flow control (IMS, RACF, BGF)
- Virtualization (Network resource, Functional modules)

Sep. 21st, ’08
2nd Workshop on FID
Virtualization: Advantages

- **Short delivery time**
 - Prompt coordination of heterogeneous infrastructures

- **Low cost**
 - Good reusability and high utilization of infrastructures

- **Flexibility**
 - Customized network and other building blocks
Agenda

- Networking evolutions
- Network resource virtualization for telecom operator
 - High-level architecture
 - Design of prototypes
- Demonstration
 - Policy-based E2E quality control
 - Resource scheduling
 - Distributed messaging flow
- Virtualization of functional modules
 - High-level architecture
 - Cache function control
- Conclusion
Virtualization: Grid approach

From G-lambda project (www.g-lambda.net)

Applications

Grid Application

Grid Portal

Grid Resource Scheduler

Computing Resource Managers

Network Resource Managers

Middleware for virtualization

Resource/Fabric

Computers

Reserved time: hhmmss - hhmmss

Duration: x min
Deadline: hhmmss

Site A

Site B

Site C

1Gbps

1Gbps

2Gbps

2Gbps

10

5

1

5

2Gbps

1Gbps

Sep. 21st, ‘08

2nd Workshop on FID

6
Seeds of virtualization in NGN

From ITU-T Rec. Y.2012

IMS (IP Multimedia Subsystem)

RACF: Resource virtualization for IMS
Network resource virtualization
- Based on Grid approach-

- Virtualization: NRM as a virtualization engine for various resources
- Common API: Network service interface (NSI) for coherent accessibility
- Business process: Harmonization to the business processes

Sep. 21st, '08 2nd Workshop on FID
Network as a service in SOA

- Loosely coupled
 - Tolerant to any change of backend systems (Good reusability)
- Implementation environment
 - Rich frameworks and development tools (Lower development cost)
- Business driven work flow
 - Easy integration to the existing business process
Virtualization of optical networks

- Resource management middleware proposed by KDDI R&D labs
- NRB: **Single point of contact** to service control layer
- NRM: **Distributed management** to cover E2E
Design of virtualization engines

- **Hierarchical** path computation with NRB-NRM load sharing resource management architecture
 - NRB: Abstracted topology handling and parallel transaction handling
 - NRM: Detailed topology handling, resource scheduling and deciding resource allocation policy

- **Universal WSI** for reconfigurable extensibility

WSI: Web Services Interface
GE-PON virtualization

- Management policies and mechanisms
 - Policy-based CIR/PIR provisioning for each LLID (<4 per user)
 - Time-scheduled bandwidth management of shared PON link
 - Call admission control and degeneration management
 - On-demand and scheduled services
 - DBA* for unused bandwidth

*DBA: Dynamic Bandwidth Allocation
RPR virtualization

- Management policies and mechanisms
 - Policy-based CIR/EIR provisioning for each VPLS path (<1023 total)
 - Classification of services with VLAN-ID and QoS
 - Time-scheduled bandwidth management of shared RPR link
 - Call admission control and degeneration management
 - On-demand and scheduled services
IP/lambda virtualization

- Management policy and mechanisms
 - Request-based adaptive LSP allocation
 - In-advance path computation with breadth-first search
 - LSP selection meeting latency and bandwidth requirements
 - Time-scheduled bandwidth management with per-link basis
 - Admission control and degeneration management
 - On-demand and scheduled services

2nd Workshop on FID

Different link attributes

- Link ID
 - A-B#1
 - B-C#1
 - C-D#1
 - D-E#1
 - B-I#1
 - J-I#1
 - J-I#2
 - I-G#2
 - G-F#2

<table>
<thead>
<tr>
<th>Path</th>
<th>Resource scheduling table per link</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-B#1</td>
<td>2 Gbit/s, 2.4 Gbit/s</td>
</tr>
<tr>
<td>B-C#1</td>
<td>2 Gbit/s</td>
</tr>
<tr>
<td>C-D#1</td>
<td>2 Gbit/s</td>
</tr>
<tr>
<td>D-E#1</td>
<td>2 Gbit/s</td>
</tr>
<tr>
<td>B-I#1</td>
<td>2.4 Gbit/s</td>
</tr>
<tr>
<td>J-I#1</td>
<td>2.4 Gbit/s</td>
</tr>
<tr>
<td>J-I#2</td>
<td>500 Mbit/s</td>
</tr>
<tr>
<td>I-G#2</td>
<td>500 Mbit/s</td>
</tr>
<tr>
<td>G-F#2</td>
<td>500 Mbit/s</td>
</tr>
<tr>
<td>500M path (J-I-G-F)</td>
<td>500 Mbit/s</td>
</tr>
</tbody>
</table>

Sep. 21st, '08
Agenda

■ Networking evolutions
■ Network resource virtualization for telecom operator
 - High-level architecture
 - Design of prototypes
■ Demonstration
 - Policy-base E2E quality control
 - Resource scheduling
 - Distributed messaging flow
■ Virtualization of functional modules
 - High-level architecture
 - Cache function control
■ Conclusion
Demonstration

- Southbound implementation of NRMss
 - A-NRM: CLIs of OLT, C-NRM: CLI of router, M-NRM: CORBA of EMS
- Typical server platforms for NRB and NRMss
 - Memory: 768 Mbytes
 - CPU: 2.4 GHz

Typical server platforms for NRB and NRMss

- Memory: 768 Mbytes
- CPU: 2.4 GHz

Demonstration environment

Sep. 21st, '08

2nd Workshop on FID
Policy-based E2E quality control

- Pre-planned (DiffServe-based)
 - Entire services are degraded without admission control and BW management
 - Degradation of entire video services

- NRM/NRB-controlled
 - E2E CIR is assured on-demand
 - Voice and video services are preserved

<table>
<thead>
<tr>
<th>Traffic</th>
<th>Typical service</th>
<th>BW profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>ToS=6</td>
<td>Voice</td>
<td>90kbps*(200 flows)</td>
</tr>
<tr>
<td>ToS=5</td>
<td>Real-time video</td>
<td>6Mbps*(N flows)</td>
</tr>
<tr>
<td>ToS=0</td>
<td>Data</td>
<td>5Mbps*(140 flows)</td>
</tr>
</tbody>
</table>

Pre-planned (DiffServe) NRM/NRB-controlled

Sep. 21st, '08 172nd Workshop on FID
Resource scheduling

- **Successful** hierarchical path computation and scheduling
 - Detailed route adaptation by C-NRM (Request 3)
 - Abstracted rerouting by roll back operation of NRB (Request 4)

<table>
<thead>
<tr>
<th>Request #</th>
<th>EP 1</th>
<th>EP 2</th>
<th>Bandwidth (M bit/s)</th>
<th>Latency (ms)</th>
<th>Scheduled time frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rtr1</td>
<td>Rtr2</td>
<td>500</td>
<td>8</td>
<td>10:00 - 11:00</td>
</tr>
<tr>
<td>2</td>
<td>CPE1</td>
<td>EP1</td>
<td>300</td>
<td>10</td>
<td>12:00 - 13:00</td>
</tr>
<tr>
<td>3</td>
<td>CPE2</td>
<td>EP2</td>
<td>300</td>
<td>22</td>
<td>14:00 - 15:00</td>
</tr>
<tr>
<td>4</td>
<td>CPE3</td>
<td>EP3</td>
<td>350</td>
<td>10</td>
<td>16:00 - 17:00</td>
</tr>
<tr>
<td>5</td>
<td>CPE3</td>
<td>EP1</td>
<td>300</td>
<td>7</td>
<td>16:00 - 17:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Request #</th>
<th>Initial route selected by NRB</th>
<th>Final assigned route (w/ assist of NRMs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rtr1-Rtr2</td>
<td>Rtr1-XC1-XC2-Rtr2</td>
</tr>
<tr>
<td>2</td>
<td>CPE1-OLT1-RPR1-RPR4-Rtr1-Rtr2-RPR8-RPR6</td>
<td>CPE1-OLT1-RPR1-RPR4-Rtr1-XC1-XC2-Rtr2-RPR8-RPR6</td>
</tr>
<tr>
<td>3</td>
<td>CPE2-OLT1-RPR1-RPR4-Rtr1-Rtr2-RPR8-RPR7</td>
<td>CPE2-OLT1-RPR1-RPR4-Rtr1-XC1-XC3-XC4-XC2-Rtr2-RPR8-RPR7</td>
</tr>
<tr>
<td>4</td>
<td>CPE3-OLT1-RPR1-RPR4-Rtr1-Rtr2-RPR8-RPR7</td>
<td>CPE3-OLT1-RPR1-RPR4-Rtr3-XC3-XC4-Rtr4-RPR8-RPR7</td>
</tr>
<tr>
<td>5</td>
<td>CPE3-OLT1-RPR1-RPR4-Rtr1-Rtr2-RPR8-RPR6</td>
<td>CPE3-OLT1-RPR1-RPR4-Rtr1-XC1-XC2-Rtr2-RPR8-RPR6</td>
</tr>
</tbody>
</table>

Sep. 21st, ‘08 2nd Workshop on FID
Distributed messaging flow

- Successful roll back with two-phase commit (request #4)
Agenda

- Networking evolutions
- Network resource virtualization for telecom operator
 - High-level architecture
 - Design of prototypes
- Demonstration
 - Policy-based E2E quality control
 - Resource scheduling
 - Distributed messaging flow
- Virtualization of functional modules
 - High-level architecture
 - Cache function control
- Conclusion
Virtualization of functional modules

Functional modules building blocks

- Load balancing
- Encap
- Compress
- DPI
- Protocol
- Redundancy
- Firewall
- Security
- Memory

On-demand/work-flow

FCoE + VPN

CIFS optimization + Compress

Load balancing + SBC

Sep. 21st, '08 212nd Workshop on FID

Secured FCoE
WAN boost
Scalable VoIP media GW
Virtualization of functional modules

NRB: Network Resource Broker
NRM: Network Resource Manager

IMS
SDP
Network service clients
Configuration system
Inventory
Traffic
Alarm

Function Manager

Network resource management system
Orchestration
SOA-bus
Virtualization

Data center

Functional modules

Access
EMS
Metro (Ring)
Packet ADM
Video-conference
P2P
IPTV
VoIP
CPE
OLT

Core (Mesh)

Functional modules

Sep. 21st, '08
Conclusion

- Virtualization of network resources
 - Consideration of heterogeneity
 - Open API
 - SOA-based design for business process

- Network resource management is a key
 - NRM and NRB
 - BPEL-based work flow management
 - Policy-based quality control
 - Scheduling

- Functional modules virtualization
 - Lego ® block networking architecture
 - Customized networking

- Future studies
 - Involvement of various functional modules
 - Interworking with network resource management

This work is partially supported by NICT (National Institute of Information and Communications Technology), Japan.